PUBLICATIONS

  • ISSN No. Print
  • ISSN No. Online
  • Registration No.
  • Periodicity
  • Print
  • Online
  • Website

The Emergence of the Idea of Irrationality In Renaissance Theoretical Music Contexts

DOI
10.15415/mjis.2015.32014

AUTHORS

Oscar Joao Abdounur

ABSTRACT

This paper intends to consider the interrelationships between mathematics and music in the context of changes in the conception of music during the r enaissance. Western music developed from relying on a cosmological- mathematical-speculative model, in which attention was focused on the rational activity of speculation, to a mathematical-empirical model, in which the main emphasis lay on the quality of the sound itself and on its laws and effects on people. Musical concepts such as temperament, division of the tone, changes in the foundations of theoretical music, mathematical-structural changes in theories of ratio and consequently the emergence of the idea of irrationals and number continuum in theoretical music contexts will be considered here in order to understand the substratum of such a change in the conception of western music

KEYWORDS

Maths/Music, Renaissance, Aritmetization of Ratios, Numbers as Continuum, Irrationals in Theoretical Music

REFERENCES

  • b orzacchini, Luigi. Incommensurability, music and continuum: a cognitive approach. a rchive for History of Exact Sciences, 61 , 273-302 (2007). http://dx.doi.org/10.1007/s00407-007-0125-0
  • c reese, David E. The Monochord in a ncient Greek Harmonic Science: c ambridge u niversity Press (2010).
  • Ellsworth, Oliver b . a Fourteenth-century proposal for equal temperament. Medieval and r enaissance Studies 5 , 445-453 (1974).
  • Goldman, David Paul. Nicholas c usanus’ contribution to music theory. r ivista Internazionale di musica sacra 10/3-4 , 308-338 (1989).
  • Herlinger, Jan W. Marchetto’s division of the whole tone. Journal of the a merican Musicological Society 34, 193-216 (1981). http://dx.doi.org/10.2307/831346
  • Scriba, c hristoph J. Zum historischen Verhältnis von Mathematik und Musik. b raunschweigische Wissenschaftliche Gesellschaft Jahrbuch 1990, 115-152 (1991).
  • b arbera, a . : The Euclidean Division of the c anon. Lincoln: u niversity of Nebraska Press (1991).
  • b ower, c alvin M. and Palisca, c laude Victor.: Fundamentals of Music. a nicius Manlius Severi nus b oethius. New Haven & London: Yale u niversity Press (1989).
  • b ywater, M.F.: Heinrich Schreiber. a yn new Kunstlich b uech...1518. London: Scolar Press (1980).
  • c aye, Pierre. La question de la proportion. r eflexions pour un humanisme du quadrivium in: r ommevaux, Sabine; Vendrix, Philippe; Zara, Vasco. Proportions – Science, Musique, Peinture & a rchitecture, 29-49 c ollection “Études r enaissantes” Turnhout: b repols Publishers (2011).
  • c iruelo, Pedro.: c ursus quatuor mathematicarum artium liberalium: quas recollegit atque correxit magister Petro c iruelus. a lcalá de Henares (1526).
  • c ohen, H. Floris.: Quantifying music. The science of music at the first stage of the Scientific r evolution, 1580-1650. Dordrecht: D. r eidel Publishing c ompany (1984).
  • Dickreiter, Michael.: The structure of harmony in Johannes Kepler’s Harmonice Mundi (1619). In Gozza. Paolo (ed.), Number to sound. The musical way to the Scientific r evolution, 173-188. Dordrecht: Kluwer a cademic Publisher (2000).
  • Erasmus Horicus. : Musica. Vatican Library, MS r egina lat. 1245 (1500?).
  • Field, J.V. r atio and Proportion in the r enaissance in: r ommevaux, Sabine; Vendrix, Philippe; Zara, Vasco. Proportions – Science, Musique, Peinture & a rchitecture, 29-49 c ollection “Études r enaissantes” Turnhout: b repols Publishers (2011).
  • Fludd, r obert. : u triusque cosmi maioris scilicet et minoris metaphysica, physica atque technica historia in duo volumina secundum cosmic differentiam divisa , Oppenheim (1617).
  • Hagel, Stefan. a ncient Greek Music: a new Technical History. c ambridge: c ambridge u niversity Press (2010). http://dx.doi.org/10.1017/ cb O9780511691591
  • Joost-Gaugier, c hristiane L. Pythagoras and r enaissance Europe: Finding Heaven. c ambridge: c ambridge u niversity Press (2009).
  • Moyer, a nn E. r eading b oethius on proportion: r enaissance editions, epitomes, and versions of the arithmetic and music in: r ommevaux, Sabine; Vendrix, Philippe; Zara, Vasco. Proportions – Science, Musique, Peinture & a rchitecture, 29-49 c ollection “Études r enaissantes” Turnhout: b repols Publishers (2011).
  • Palisca, c laude Victor.: The Musica of Erasmus of Höritz. In Palisca, c . (ed.). Studies in the History of Italian music and music theory, 146-167. Oxford: c larendon Press (1994).
  • Palisca, c laude Victor.: Zarlino, Gioseffo. In Stanley, Sadie (ed.).The New Grove dictionary of music and musicians, 646-649. London: Macmillan (1995).
  • Psellus, Michael.: Pselli, doctiss. uiri, perspicvvs liber de quatuor mathematicis scientijs, arithmetica, musica, geometria, [et] astronomia : Graece et latine nunc primùm editus. b asileae: Oporinus (1556).
  • r ommevaux, Sabine; Vendrix, Philippe; Zara, Vasco. Proportions – Science, Musique, Peinture & a rchitecture. c ollection “Études r enaissantes” Turnhout: b repols Publishers (2011).
  • r ommevaux, Sabine. De la proportion au rapport in: r ommevaux, Sabine; Vendrix, Philippe; Zara, Vasco. Proportions – Science, Musique, Peinture & a rchitecture, 17-27. c ollection “Études r enaissantes” Turnhout: b repols Publishers (2011).
  • Santiago Kastner, Macario.: Fray Juan b ermudo. Declaración de Instrumentos musicales. b ärenreiter: Verlag Kassel und b asel (1957).
  • Sylla, Edith Dudley.: c ompounding ratios. b radwardine, Oresme, and the first edition of Newton’s Principia. Mendelsohn, E. (ed.). Transformation and tradition in the sciences. Essays in honor of I. b ernard c ohen, 11-43. c ambridge: c ambridge u niversity Press (1984).
  • Szabo, Árpád.: The b eginnings of Greek Mathematics. b udapest: a kademiai Kiado (1978). http://dx.doi.org/10.1007/978-94-017-3243-7
  • Tonietti, Tito M. Music between hearing and counting (a historical case chosen within continuous longlasting conflicts). In Mathematics and c omputation in Music, ed. c arlos a gon, Moreno a ndreatta Gerard a ssayad, Emmanuel a miot, Jean b resson and John Mandereau, 285-296. b erlin: Springer. Http://www. springerlink.com/content/a576762u0w2j4608/ (2011). http://dx.doi.org/10.1007/978-3-642-21590-2_22
  • Van Wymeersch, b rigitte. Qu’entend-on par “nombre sourd2? In Music and Mathematics in Late Medieval and Early Modern Europe, ed. Philippe Vendrix, 97-110. Turnhout: b repols (2011).
  • Ward, Tom. Music and music theory in the universities of central Europe during the fifteenth century. In Musical Theory in the r enaissance, ed. c ristle c ollins Judd, 563-571. Farnham, Surrey: a shgate (2013 ). a bdounur, OJ 172
  • Winnington-Ingram, r . P. “ a ristonexus” In: Sadie, Stanley (ed.). The new Grove dictionary of music and musicians, 592. London: Macmillan (1995).
  • Zarlino, Gioseffo.: Sopplimenti musicali del rev. M. Gioseffo Zarlino da c hioggia. Venetia: Francesco de Franceschi (1588).
Call for Papers Instructions to the Authors Paper Submission Subscription Form Copyright Form Author Profile Format Sample paper

Refereed Research Journal

Member of CrossRef

Indexing

Call for Papers

Invites papers for next issue of Mathematical Journal of Interdisciplinary Sciences

Frequency

Mathematical Journal of Interdisciplinary Sciences is published Bi-Annually

Number-1 September
Number-2 March